jump to navigation

NexGen, Understanding Synchros April 29, 2013

Posted by phoenixcomm in DIY Aircraft Cockpit, Hardware, Software, Synchro.
Tags: , , , , , , , , , , , ,
add a comment

There are many types of synchros, Rx, Tx, and Resolvers  But what you have to remember that they are all just motors.
Synchro Diagram As you can see this is really just a 3 phase motor, that is the three (3) Stators, are 120 degrees apart. But you ask what is the Rotor winding for? Well if you look at the picture of your cars Alternator Diagramalternator with out the diodes it kind of does the same thing as the Drive winding on the alternator. So if you took the diodes out of the alternator, and you put a 400 Hz sine wave on the Drive winding, remember you have to spin it, you will get 400 Hz 3 phase power, just what I need for my plane.
Duh Now What?? 😕
So now I have you all thoroughly confused. Right?
In a perfect synchro world you will have a Tx (like on a flap), and the Rx (in the cockpit) which is inside a indicator, both Rotors are driven in parallel  So when the flap is moved the changes on the 3 Stator, windings are impressed from the Tx, to the Rx and if by magic the needle in the indicator moves with the flap.
I will not bore you with the math behind this, but this is a question?

What would happen if you put on the 3 Stators, a 400 Hz  3 phase, that is each one of the phase are 120 degrees apart, sine wave???

But wait, what about the rotor?? Ok that’s the key. Remember what we did with that alternator? We do the same thing here. But we don’t have to spin the synchro, we spin it, or move it electrically!

Digital Resolution of Angular Displacement
Bits n2 Degrees BAM
1 2 180 32768
2 4 90 16384
3 8 45 08192
4 16 22.5 04096
5 32 11.25 02048
6 64 5.625 01024
7 128 2.8125 00512
8 256 1.40625 00256
9 512 0.703125 00128
10 1024 0.3515625 00064
11 2048 0.17578125 00032
12 4096 0.087890625 00016
13 8192 0.043945312 00008
14 16348 0.021972656 00004
15 32768 0.010986328 00002
16 65536 00001

Remember those 3 phases that you put on the Stators well if we call the unshifted signal the reference and you apply it also to the Rotor winding. Your indicator should point to 0. Ok so far?
Now if you phase shift the signal 90 degrees on the Rotor winding your indicator should move to 90 degrees.
Wow this is simple shit, right?
Lets get down to business. You can see a with your eyes about a ½ degree movement. Don’t believe me look at your analog watch’s second hand. 1 second is 1/60 of a circle. So you need about 1/10 of a degree so the indicator will float. So by checking the table you will see you only need 12 bits of resolution. I have also indicated a column for 16 bit BAM, as they are much easier to deal with, than degrees. And I don’t have to use the Trig functions. To understand how to calculate the BAM please look at the link below. One more thing about a BAM it only represents part of a circle. I know I hear the question but we only need 12 bits so why use 16 and through away 4 bits? Well remember the is a computer and it likes things in 8 bit chunks, so getting a 16 bits on a 32 bit embedded CPU is no problem.
Here are two 16 bit functions, I wrote them as that is all you will need:

#define TO_BAMS16(x) (((x)/360.0) * 65536)
#define TO_DEGS16(b) (((b)/65536.0) * 360)

**You will notice that I wrote them as a #define as I let the preprocessor take care of it, rather than making them a formal functions, in that way I can avoid the call and return time. You will also notice the 16 at the end of the name, as I also have 32 bit versions of the functions. The 16 bit version is fine for the instruments  but with the 32 bit version, I can resolve down to a postage stamp size any where in the world!

Meet the Arduino Killer!! The BeagleBone! November 5, 2012

Posted by phoenixcomm in Arduino, Beagle Board, BeagleBone, DIY Aircraft Cockpit, Flight Simulation, Linux, ps2 keybaord, TI Cortex™-A8 CPU.
Tags: , , , , , , , ,
add a comment

All I can say is: Holly crap Batman

they got it right!

I plugged in the little board (its size is 3.4″ × 2.1)Image It comes out of the box with the Angstrom Linux distro, an RJ45 (Ethernet) and 2 USB ports, one is to connect to your host and the other is for devices, and then just a shit load of I/O! let me explain: two I²C ports, five UARTs,  a SPI interface, a CAN interface, eight PWM ports for motor control etc, eight Analog-to-Digital Converters, and count them 66 general purpose Digital I/O pins!! There are a mess of Shields but here their called Capes, an no your Arduino Shields will not fit.

Gone is the Arduino  bastard kind of C language! Now instead of their smallish library, you can draw on 35+ years of code. No more add-hock programming. It’s not a new paradigm its Linux.  Now I can write and test my code in Eclipse, move it to the bone, recompile / re-target it, or do that on the desktop and run it!

Ok the Bone has a 720Mhz TI Cortex™-A8 CPU, 256Mb DRAM, + Flash. All of this for just under 90 bucks!

Ok like I said before I plugged it into my Linux Mint desktop via the USB port. The board came up within less than 10 seconds. I located it in the finder told it to ‘exit’ thats to change modes on the USB interface,  and then in Chrome and entered in the URL bar and hit enter and I am in the Cloud9 IDE but more about that later.


BTW: My first Challenge is to migrate the PS/2 keyboard code from the Arduino Playground. http://www.arduino.cc/playground/Main/PS2Keyboard to the BeagleBoard.

%d bloggers like this: